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Abstract. Hadwiger showed by computing the intrinsic volumes of a regular sim-
plex that a rectangular simplex is a counterexample to Wills’s conjecture for the
relation between the lattice point enumerator and the intrinsic volumes in dimen-
sions not less than 441.

Here we give formulae for the volumes of spherical polytopes related to the in-

trinsic volumes of the regular crosspolytope and of the rectangular simplex. This
completes the determination of intrinsic volumes for regular polytopes. As a conse-
quence we prove that Wills’s conjecture is false even for centrally symmetric convex
bodies in dimensions not less than 207.

1. Introduction

In convexity the intrinsic volumes play a central rle. They are most easily defined
by the Steiner formula: We denote by Kd the family of all convex bodies —
compact convex sets — in the d-dimensional Euclidean space Ed. Then the volume
of the outer parallel body Kρ at distance ρ ≥ 0 of K ∈ Kd is a polynomial in ρ
[BF]. In terms of the intrinsic volumes Vi(K), 0 ≤ i ≤ d, this polynomial is given
by

V (Kρ) =

d
∑

i=0

Vi(K)κd−iρ
d−i,

where κi denotes the i-dimensional volume of the i-dimensional unit ball [Mc]. In
particular we have that Vd(K) is the volume of K and Vd−1(K) is half of its surface
area.

For polytopes P ∈ Kd we have a more explicit formula. To describe this formula
let Fi(P ) denote the set of all i-dimensional faces of P and for F ∈ Fi(P ) let c(F )
denote the positive hull of all outward normals of supporting hyperplanes of F ,
embedded in the Ed−i. The external angle of a face F is denoted by γ(F ), that is
the ratio of the spherical volume of c(F )∩Sd−i−1 to the spherical volume of Sd−i−1,
where Sd−i−1 denotes the (d − i)-dimensional unit sphere. With this notation the
intrinsic volumes of a polytope P ∈ Kd become [Mc]

(1.1) Vi(P ) =
∑

F∈Fi(P )

γ(F )V i(F ),

where V i(·) denotes i-dimensional volume.
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Thus the computation of the Vi’s involves the computation of the volumes of
spherical polytopes, for which we have explicit formulae only in small dimensions
(see e.g. [BöH]). In fact except for boxes, for which the problem is trivial as the nor-
mal cones are orthants, only the external angles for the regular simplex are known
in high dimensions, as here the intersections c(F ) ∩ Sd−i−1 are regular spherical
simplices, whose volumes were determined by Ruben [R], see also Hadwiger [H].

Here we give a formula for the Vi(C
d), i = 0, . . . , d, where Cd = conv{± ei, 1 ≤

i ≤ d} with ei the i-th standard unit vector, denotes the regular d-dimensional
crosspolytope. Thus the intrinsic volumes of all the regular polytopes are now
determined, as the remaining cases in d = 3, 4 are trivial.

In section 3 we use the results to study crosspolytopes as examples for the rela-
tion between the lattice point enumerator G(K) = card(K ∩ Z

d) and the intrinsic
volumes. For a general overview on this topic we refer to [GL, Chapter 2] or [BW].
A satisfactory lower bound for G(K) in terms of the intrinsic volumes was given by
the result of Bokowski, Hadwiger and Wills [BHW], who showed that

G(K) ≥ Vd(K) − Vd−1(K),

and that this bound is best possible. In the other direction far less is known. Wills

[W] gave constants λi, such that

G(K) ≤
d
∑

i=0

λiVi(K).

Further he conjectured λi = 1 for all i. In terms of Wills’s functional W (K) =
∑d

i=0 Vi(K) this becomes G(K)/W (K) ≤ 1. The conjecture was proved in some
special cases as e. g. for d = 2 by Nosarzewska [N] and for d = 3 by Overhagen

[O]. Further it is easy to see that the conjecture cannot be improved as there is
equality for all lattice boxes with axes parallel to the coordinate axes.

Rather surprisingly it was disproved by Hadwiger [H] by the following simplex:
Let Rd be the rectangular simplex with vertices 0, e1, . . . , ed. Then Hadwiger

showed that
√

dRd is a counterexample to G(K) ≤ W (K) for d ≥ 441. (With the
same numerical calculations used by Hadwiger one can show that even 15 · R410

is a counterexample.)
Here we study the behaviour of G(aCd)/W (aCd), a > 0. We first show that in

a certain sense crosspolytopes are better counterexamples than simplices (Theorem
3.1.). This shows specifically that Wills’s conjecture remains wrong even if only
bodies which are symmetrical with respect to the origin are considered. Finally, we
use the results from section 2 to show that Wills’s conjecture becomes wrong for
d ≥ 207, thus narrowing the gap for which it is still open.

2. Intrinsic volumes of regular crosspolytopes

Lemma 2.1. Let F i be an i-dimensional face of Cd, 0 ≤ i < d. The external angle

of F i is given by

γ(F i) =
2d−i−1

√
π

d−i

∫ ∞

0

e−x2

(

∫ x/
√

i+1

0

e−y2

dy

)d−i−1

dx.
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Proof. Consider the i-dimensional face F i = conv{ed−i, . . . , ed} of Cd. The 2d−i−1

outward normal vectors of the supporting hyperplanes of the facets containing F i

are given by {∑d−i−1
k=1 jkek +

∑d
k=d−i ek, jk ∈ {−1, 1}}. The normal cone c(F i) is

the positive hull of these normal vectors, and it follows that (cf. [H])

(2.1)

∫

c(F i)

e−‖x‖2

dx = γ(F ) · V d−i−1(Sd−i−1)

∫ ∞

0

e−r2

rd−i−1dr

= γ(F i) · (d − i) · κd−i ·
Γ((d − i)/2)

2
= γ(F i) · π(d−i)/2,

where V d−i−1(Sd−i−1) denotes the spherical volume of Sd−i−1. Now, let U = {x ∈
Ed−i | xd−i ≥ 0, |xk| ≤ xd−i, 1 ≤ k ≤ d − i − 1} and f : U → c(F i) the linear and

bijective map f(x1, . . . , xd−i) =
∑d−i−1

k=1 xkek + xd−i

∑d
k=d−i ek. From this we get

∫

c(F i)

e−‖x‖2

dx =
√

i + 1

∫

U

e−‖f(x)‖2

dx

=
√

i + 1

∫ ∞

0

∫ xd−i

−xd−i

· · ·
∫ xd−i

−xd−i

e−(x2

1
+···+x2

d−i−1
+(i+1)x2

d−i
)dx1 . . . dxd−i

=
√

i + 1

∫ ∞

0

e−(i+1)x2

(
∫ x

−x

e−y2

dy

)d−i−1

dx

= 2d−i−1

∫ ∞

0

e−x2

(

∫ x/
√

i+1

0

e−y2

dy

)d−i−1

dx.

Together with (2.1) we get the desired formula. �

In particular we have γ(F 0) = (2d)−1 and γ(F d−1) = 1/2. Every i-dimensional

face of Cd is a regular i-simplex with edge length
√

2, and hence the volume of such
a face is

√
i + 1/i!. Further, the number of i-faces of Cd is 2i+1

(

d
i+1

)

[McS, pp. 80]

and so we have by (1.1)

Theorem 2.1. The intrinsic volumes of the regular crosspolytope Cd ⊂ Ed are

given by the following formulae:

Vd(C
d) =

2d

d!
,

and for 0 ≤ i ≤ d − 1,

Vi(C
d) = 2d

(

d

i + 1

)
√

i + 1

i!
√

π
d−i

×
∫ ∞

0

e−x2

(

∫ x/
√

i+1

0

e−y2

dy

)d−i−1

dx.

With the same methods the intrinsic volumes of the rectangular simplex Rd can
be computed. We only have to observe that there are two kinds of i-faces. We omit
the calculation but only state:
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Theorem 2.2. The intrinsic volumes of the rectangular simplex Rd ⊂ Ed are given

by the following formulae:

Vd(R
d) =

1

d!
,

and for 0 ≤ i ≤ d − 1,

Vi(R
d) =

(

d

i

)

1

i!2d−i
+

(

d

i + 1

)
√

i + 1

i!
√

π
d−i

×
∫ ∞

0

e−x2

(

∫ x/
√

i+1

−∞
e−y2

dy

)d−i−1

dx.

Let us remark that the external angles of Rd can also be computed by apply-
ing Schläfli’s recursive differential equation [Sch], but this is a more laborious
method.

3. Crosspolytopes as examples in Wills’s conjecture

The next theorem shows that regular crosspolytopes are better counterexamples
to Wills’s conjecture than rectangular simplices:

Theorem 3.1. For every a > 0 and for every d ∈ N there is a do ≤ d, such that

G(aCd0)

W (aCd0)
≥ G(aRd)

W (aRd)
.

If d = d0 then the inequality is strict.

Proof. For i = 0, . . . , d we denote by P d
i the polytope

P d
i = conv{0,± e1, . . . ,± ei, ei+1, . . . , ed}.

Thus P d
0 = Rd and P d

d = Cd. Now let µ = G(aRd)/W (aRd) and

d0 = min{j | G(aP j
i )/W (aP j

i ) ≥ µ for some 0 ≤ i ≤ j}.

Obviously we have d0 ≤ d. Further, we have from the additivity of the functionals
G(·), W (·), for 1 ≤ i ≤ j

G(aP j
i ) = 2G(aP j

i−1) − G(aP j−1
i−1 ),

W (aP j
i ) = 2W (aP j

i−1) − W (aP j−1
i−1 ).

By definition we have G(aP j
i )/W (aP j

i ) < µ for all 0 ≤ i ≤ j < d0, and for some i0
we have G(aP d0

i0
)/W (aP d0

i0
) ≥ µ. If i0 = d0 we have d0 < d and there is nothing to

prove. Otherwise

G(aP d0

i0+1)

W (aP d0

i0+1)
=

2G(aP d0

i0
) − G(aP d0−1

i0
)

2W (aP d0

i0
) − W (aP d0−1

i0
)

>
2µW (aP d0

i0
) − µW (aP d0−1

i0
)

2W (aP d0

i0
) − W (aP d0−1

i0
)

= µ

It follows that G(aP d0

k )/W (aP d0

k ) > µ for i0 < k ≤ d0, and thus we have the
assertion. �
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4. Numerical calculations

In view of Theorem 3.1., we should expect that Wills’s conjecture fails for a
dimension rather lower than 410. This is indeed the case. Let n ∈ N be a positive
integer. The number of lattice points of nRd is G(nRd) =

(

n+d
d

)

, and for the regular

crosspolytope Cd we have [PS, p. 4]

G(nCd) =

d
∑

i=0

2d−i

(

d

i

)(

n

d − i

)

.

By Theorem 2.1. and Theorem 2.2. we can compute the ratio G/W for nRd and
nCd to any desired precision by numerical integration. The resulting values for
d = 4, 9, 16, . . . , 484 and n =

√
d are summarized in the following table:

d n G(nCd)/W(nCd) G(nRd)/W(nRd) d n G(nCd)/W(nCd) G(nRd)/W(nRd)
4 2 0.6971 0.8096 169 13 0.7766 0.4338
9 3 0.5177 0.6243 196 14 0.9303 0.4717
16 4 0.4362 0.5051 225 15 1.1314 0.5194
25 5 0.4004 0.4347 256 16 1.3957 0.5786
36 6 0.3896 0.3941 289 17 1.7445 0.6517
49 7 0.3960 0.3717 324 18 2.2080 0.7417
64 8 0.4168 0.3617 361 19 2.8278 0.8524
81 9 0.4515 0.3611 400 20 3.6625 0.9887
100 10 0.5014 0.3683 441 21 4.7946 1.1570
121 11 0.5692 0.3827 484 22 6.3412 1.3654
144 12 0.6589 0.4044

In particular we have G(14 ·C207)/W (14 ·C207) = 1.0022 and G(16 ·R401)/W (16 ·
R401) = 1.0031. The difference beween Hadwiger’s result for Rd (dimension 410)
and our result arises from the fact that Hadwiger did not compute the intrinsic
volumes for Rd but for a circumscribed regular simplex [H].
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